
 Copyright © 2008, Kristian Hart

 This file is part of BareMetal

 BareMetal is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 BareMetal is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with BareMetal. If not, see <http://www.gnu.org/licenses/>.

BareMetal Design Doc

Introduction

This is the design specification for the
BareMetal Operating System. The first part of this
design document will be a general overview of how the
operating system works, the later part will be a
detailed description of how specific things work like
memory allocation and deallocation and such. BareMetal
gets its name from being a very low level operating
system and giving more control over things to the
programmer. The Operating System does not aim to have
POSIX compliance, instead it aims to create a
completely original design for its kernel. BareMetal is
meant not for the General Purpose user, but for
advanced programmers who wish to test out their ideas
under a stable OS while still having control over
everything they need.

http://www.gnu.org/licenses/

Goals

● A 64 bit OS that people can use

● An OS that people WILL use

● An Os written completely in FASM assembly

● A stable OS that won't crash

● An OS that gives two options to the programmer low-
level or high-level

Running Environment

The Operating System will be organized in a
manner as such:

All software will run in ring 0. The only
protection for the software will be provided through
the kernel. Software can use the kernels software
interrupts, use the driverlib functions, or communicate
directly with the hardware. This provides a number of
options while maintaining a maximum of control over the
computers functions. The purpose of the OS does not
revolve around networking and using internet, just the
ability to explore the hardware easily.

Software

Driverlibs

Hardware Kernel

Scheduling

Scheduling will be cooperative multitasking. The
reason that cooperative multitasking has been chosen is
so that the OS does not have to worry about two
processes accessing the disk at the same time and
sending different commands to the same ports at the
same time. This way all tasks can finish their critical
regions and not have errors. This puts all of the when
to schedule decision on the programmer, though it is
not expected that an inexperienced programmer will be
using this system and not know when to schedule.

Memory

Paging will be used in the memory scheme as
BareMetal is a 64 Bit Operating System. The only real
memory protection will be through what the system
provides.

System Calls

Here is a list of all system calls that will be
implemented as software interrupts, all other functions
will be in the driverlibs.

Description:
There are very few system calls, this is

because most all hardware access and such is done
through the driverlibs. Just about all of these system
calls relate to process management.

void schedule();

The schedule(); function is for when a

process has gone past its critical region and can give
up the CPU. All it does is execute the highest priority
process.

execute(char *file);

The execute system call starts a new task. There
are no flags options because even if protection is
provided for files in the driverlibs the programmer can
just not use them and write his own procedures to
access a file that is owned by another user. All files
are puplic.

