Now, obviously no matter how you record time there comes a point when it rolls over. Neverthelss, I started thinking of ways to extend the life of a time stamp and one of the ways I came up with that I believe is somewhat unique is setting the time epoch in the future. If the value returned is a

*signed*integer counting the nanoseconds "since" Jan 1st, 2300, then current readings would give a negative number. After 2300 it can return an

*unsigned*integer, allowing it to continue counting until 2884 before a new standard is needed. You cannot compare readings from the entire ~900 year range: readings after ~2592 cannot be compared to readings before 2300, but, so long as you're not comparing readings very far apart, it does allow for a very long range without the need for a new standard.

Another idea I had was using a double precision floating point value. As it moves beyond its time epoch it sacrifices precision for larger numbers. 285,000 years after its time epoch it still manages millisecond precision -- not too bad! And it continues to maintain 1-second precision even 285 million years after its time epoch -- not super precise, but good enough to keep track of time.